skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sintov, Avishai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acquiring a precise model is a challenging task for many important robotic tasks and systems - including in-hand manipulation using underactuated, adaptive hands. Learning stochastic, data-driven models is a promising alternative as they provide not only a way to propagate forward the system dynamics, but also express the uncertainty present in the collected data. Therefore, such models en- able planning in the space of state distributions, i.e., in the belief space. This paper proposes a planning framework that employs stochastic, learned models, which ex- press a distribution of states as a set of particles. The integration achieves anytime behavior in terms of returning paths of increasing quality under constraints for the probability of success to achieve a goal. The focus of this effort is on pushing the efficiency of the overall methodology despite the notorious computational hardness of belief-space planning. Experiments show that the proposed framework enables reaching a desired goal with higher success rate compared to alternatives in sim- ple benchmarks. This work also provides an application to the motivating domain of in-hand manipulation with underactuated, adaptive hands, both in the case of physically-simulated experiments as well as demonstrations with a real hand. 
    more » « less